changoumbe.edu

Shortest only:

Dijkstra's Algorithm

- Single source shortest path
- assumes edge cost 20

Shortest Path Problems

- directed or undirected graphs

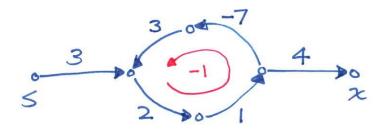
- G=(V,E) has weight/distance/length on each edge:

W: E → R

- Types of problems:

all pairs shortest path ? no single pair single source shortest path

Negative cost cycles



- Shortest path from s to x not well-defined
- No meg. cost cycles => vertices on shortest paths do not repeat

How to deal with negative cost cycles:

1 Not allow negative weight edges. Dijkstras algorithm

2) Not allow cycles. directed acyclic Shortest path in a DAG. graph

3) Use slower algorithm that can detect and find negative cost cycles.

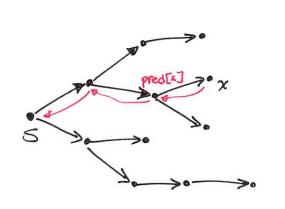
Bellman-Ford

Optimal Substructure

If p is a shortest path, then subpath of p from u to v is also a shortest path.

Otherwise, we can splice in shorter path from n tov and obtain an even shorter path from x 5 to x.

Shortest Path Tree



Path from s to x in the shortest path tree must be shortest.

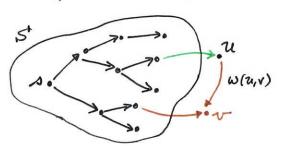
Works because sub-paths of shortest paths must also be shortest.

follow pred[x] to construct path from s to x

Dijkstra's Algorithm

Idea: O Grow shortest path tree S

- @ Initally, S= Ø
- 3 Add vertex u, such that dist[u]
 is smallest
- 4) Update neighbors of u.



dist[u] + w(u,v) < dist[v]?

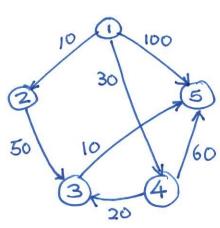
if so, make u predecessor

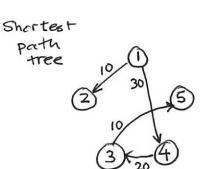
of v:

distance of

current known

Dijkstra's Algorithm Example:





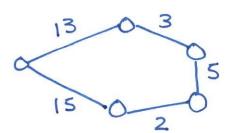
dist[]:		addo	add	add	add 3	add (5)
1	0	0	0	0	0	0
2	00	10	10	10	10	10
3	00	∞	60	50	50	50
4	~	30	30	30	30	30
5	8	100	100	90	60	60
pred[]:						
1	nil	nil.	nil	nil	nil	nil
2	nil	1	1	1	1	1
3	nil	nil	2	4	4	4
4	nil	1	1	1	1	1
5	nil	I	1	4	3	3

DIJKSTRA PRIM(G, w, r) $Q = \emptyset$ for each $u \in G, V$ $u.key = \infty$ $u.\pi = NIL$ INSERT(Q, u)DECREASE-KEY(Q, r, 0) // r.key = 0while $Q \neq \emptyset$ u = EXTRACT-MIN(Q)u. key + w(u,v) < v. key **for** each $v \in G.Adj[u]$ if $v \in Q$ and w(u, v) < v.key

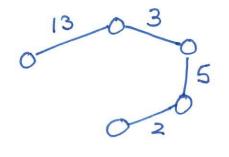
 $v.\pi = u$ DECREASE-KEY $(Q, v, \frac{w(u, v)}{w(u, v)})$

 $\nu.\pi = u$

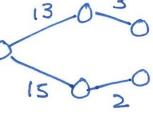
Minimum Spanning Tree vs. Shortest Path Tree



MST:



SPT:



Running time of Dijkstra's algorithm

V-1 EXTRACT_MIN

SE DECREASE_KEY

Arrays: (V-1). O(V) + E. O(1) = O(V2)

Heaps: (V-1). O(log V) + E. O(log V) = O(Elog V)

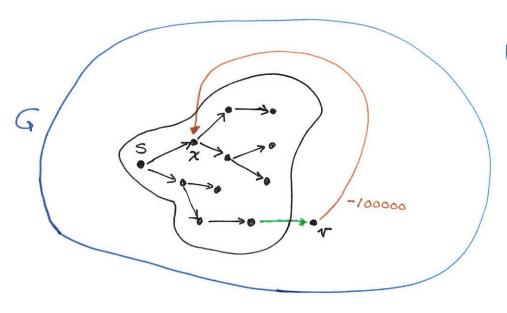
Fibonacci Heaps:

EXTRACT_MIN 105 V

Decrease-Key $\Theta(1)$ amortized time

(V-1). O(log V) + E. O(1) = O(Vlog V + E)

Dijkstra's algorithm might fail when edge cost < 0



After v is added to the shortest path tree, dist[x] needs updating.

Prove that Dijkstra's algorithm is correct.

dist[u] = value computed by algorithm

 $\delta(s,u)$ = length of shortest path from s to u= $\delta(u)$ ~ shorter notation when s is understood

Claim: When u is added to the shortest path tree S, dist[u] = S(u).

Proof by contradiction.

Suppose not. Let 1= source vertex.

het u be the first vertex added to S s.t. dist[u] + S(u).

We know: S # Ø

11 \$ source

there exists a path from s to u.

Let p be the shortest path from s to u. I not not.

There arises

There exists veitex in V-S on path p since u& S. Let y be the first such vertex.

Let x be y's predecessor on path p.

u first >> dist[x]=&(x)

path p

S

A

y

y

y

P Shortest path \Rightarrow dist[y] = S(y). When we added x to S, we would have updated dist[y] to S(y).

u added instead of y ⇒ dist[u] ≤ dist[y]

y on path before u & no neg. cost edges

>> Suy < Sux

possibly x=x and/or u=4

S(u)≤dist[u] since dist[u] is length of some path.

S(y) < S(u) < dist[u] < dist[y] = S(y)

⇒ S(u) = dist[u] a contradiction.